
✈Driver
Development

✈

Version 2.1

GEOS Software Development Kit Library

Version 2.1

✈Driver
Development

✈

Geoworks
Alameda, CA

Geoworks provides this publication “as is” without warranty of any kind, either
express or implied, including but not limited to the implied warranties of
merchantability or fitness for a particular purpose. Geoworks may revise this
publication from time to time without notice. Geoworks does not promise
support of this documentation. Some states or jurisdictions do not allow
disclaimer of express or implied warranties in certain transactions; therefore,
this statement may not apply to you.

Geoworks® application and tools software and the GEOS® operating system
software copyright © 1990-1994 Geoworks. All rights reserved. United States
Patent 5,327,529. Published 1994.
Printed in the United States of America

Geoworks®, Geoworks Ensemble®, Ensemble®, GEOS®, PC/GEOS®,
GeoDraw®, GeoManager®, GeoPlanner®, GeoFile®, GeoDex® and
GeoComm® are registered trademarks of Geoworks in the United States and
Other countries.

GeoWrite, GeoBanner, GeoCalc,GeoDOS , Lights Out and the Geoworks logo
are trademarks of Geoworks in the United States and other countries.

Trademarks and service marks not listed here are the property of their
respective owners. Every effort has been made to treat trademarks and service
marks in accordance with the United States Trademark Association’s
guidelines. Any omissions are unintentional and should not be regarded as
affecting the validity of any trademark or service mark.

✈Driver
Development

✈

Driver Basics 7
1.1 Driver Basics ... 9
1.1.1 Driver Behavior10
1.1.2 Driver Structure11
1.1.3 Extended Drivers11

1.2 Defining a Basic Driver .. 11
1.2.1 The Driver’s .GP File12
1.2.2 Information about the Driver13
1.2.3 Extended Drivers16
1.2.4 The Strategy Routine19
1.2.5 Escape Codes26

Mouse Drivers 27
2.1 Mouse Drivers ... 29
2.1.1 Data Structures29
2.1.2 Functions30

PCMCIA Drivers 35
3.1 PCMCIA Drivers .. 37
3.1.1 State Information38
3.1.2 Handling Basic Functions38
3.1.3 PCMCIA Driver Functions42

3.2 PCMCIA Library Functions .. 49

3.3 CardServices Functions ... 50

3.4 CardServices Events .. 53

✈Driver Development

✈Driver Basics

1

✈

1.1 Driver Basics.. 9
1.1.1 Driver Behavior ..10
1.1.2 Driver Structure ...10
1.1.3 Extended Drivers ... 11

1.2 Defining a Basic Driver ... 11
1.2.1 The Driver’s .GP File ..12
1.2.2 Information about the Driver ..13
1.2.3 Extended Drivers ...16
1.2.4 The Strategy Routine..19
1.2.4.1 What Functions Must Be Handled?.....................................19
1.2.4.2 The DriverFunction Type ...20
1.2.4.3 Writing the Strategy Routine...22
1.2.4.4 The DriverExtendedFunction Type24
1.2.5 Escape Codes ...26

✹ 8

✈DDK

Driver Basics

✹ 9

✈Driver Development

There are three kinds of geode: applications, libraries, and drivers. Most
programmers will only write applications. A few will write libraries, either
for their own use or for other programmers’. A very few will write device
drivers.

GEOS fully supports writing device drivers in assembly language. (It is
possible to write some drivers in C, but this is not recommended, due to speed
requirements.) Often, writing a driver for a new device is much like writing
a driver for an existing, older device of the same kind; e.g. writing a driver for
a new bus mouse is much like writing a driver for any other bus mouse. For
this reason, many GEOS device drivers share a lot of code; e.g. most of the
mouse drivers use a standard suite of routines, perhaps modified slightly for
the particular mouse.

The SDK contains examples of mouse, power, pcmcia, and sound drivers; by
examining them, you should be able to see how a driver is put together, and
how to rewrite one of those drivers for a new device. These examples are
located in the \OMNIGO\DRIVER\DDK directory.

1.1 Driver Basics
One of the advantages of the GEOS operating system is that it insulates
application developers from many of the low-level hardware chores. GEOS
does this by breaking up geodes into several types.

Most programmers write applications; these are the most visible geodes.
Users interact directly with applications; as a general rule, they only interact
indirectly with non-application geodes.

Applications use libraries. All applications use the GEOS kernel, which
functions as a kind of “system library”. Most applications use many other
libraries as well. Libraries can have many functions. For example, object
libraries define classes for applications to use, and many code libraries
provide suites of pre-written routines that applications can use as needed.
There is another role libraries play, though: they serve as an intermediary
between applications and drivers.

Driver Basics

✹ 10

✈Driver Development

1.1

Drivers provide the nuts-and-bolts interface between GEOS and the
computer’s devices and peripherals. Drivers take care of such tasks as
writing data to the screen, sending information to the printer, and handling
input from the mouse and keyboard. Drivers do not, as a rule, interact
directly with applications or with the user. Instead, the kernel and other
libraries act as intermediaries between the drivers (and their associated
hardware) and the applications.

Each kind of driver (mouse, printer, power management, etc.) has certain
functions it is expected to fulfill. From the point of view of a library using a
printer driver, for example, all printer drivers should look and act more or
less the same. Thus, a driver will have close constraints on its interface with
other parts of GEOS.

1.1.1 Driver Behavior
In some ways, drivers behave differently from other geodes. One major
difference is that for some drivers, running speed is a much higher priority
than it is for most applications or libraries. A mouse driver, for example, has
to handle mouse movements as quickly as possible, to keep from slowing
down the rest of the system every time the user moves the mouse. For this
reason, drivers tend to be written differently than other geodes. Most geodes
are concerned with making their running size as small as possible; a driver
is more likely to tolerate a larger size to get faster response. (This depends,
of course, on the driver. A print driver, for example, doesn’t need to be nearly
as efficient as a video driver.)

Drivers may also disable interrupts to perfrom their functions. They are the
only geodes permitted to do this. However, drivers should do this only when
absolutely necessary. Very few GEOS system routines may be called with
interrupts disabled. In practice, you should re-enable interrupts before
making any system calls.

Drivers tend to use fixed memory more often than other geodes do. A driver’s
strategy routine (described below) and interrupt handlers must all be in fixed
memory; any other timing-critical routines may also be in fixed resources.

Defining a Basic Driver

✹ 11

✈Driver Development

1.1.2 Driver Structure
A driver usually provides two communication structures. One is the interface
it provides to the GEOS system, either through a library or a GEOS
application; the other is its contact with whatever device it drives.

The driver’s interface to the system is called the strategy routine. Whenever
the system or a library needs to interact with a driver, it calls the strategy
routine; it passes in a code number saying what it needs to have the driver
do. This code is used by a jump table to call an appropriate routine in the
driver. The strategy routine must be in a fixed code resource.

A driver’s interface with its device will depend on what kind of device it’s
driving. Most often, a driver will receive and handle interrupts from its
device. It does this by registering an interrupt handler with the GEOS kernel.
The interrupt handler must also be in a fixed code resource.

1.1.3 Extended Drivers
Some drivers can handle a number of similar, but distinct, devices. These
drivers are known as extended drivers. An extended driver must provide
certain extra information about itself to the system. Furthermore, it must
provide certain extra functionality to the kernel.

When an extended driver is loaded, it is told which of its various devices it is
intended to drive.

1.2 Defining a Basic Driver
Every driver, of whatever type, has a few components in common. The driver
stores information about itself in a certain, rigidly defined way; that way, the
system can get information about the driver in a direct manner.

The driver must have a strategy routine that performs certain specific
functions. Some of these functions are similar for all drivers of whatever
type; these are listed in this section. Others are specific for a type of driver;
these will be listed in the chapter pertaining to that type of driver.

Driver Basics

✹ 12

✈Driver Development

1.2

1.2.1 The Driver’s .GP File
A driver is a geode. As such, it will be compiled as any other geode, and
contains a geode parameters file. The geode parameters file looks somewhat
different than an application .gp file, however. A driver’s geode parameters
file should exhibit the following characteristics:

◆ name should end with the .drvr suffix. This name must be unique across
all drivers, applications, and libraries.

◆ type should be declared as driver. The driver may also be declared system
and single.

Marking a geode as driver results in the setting of GA_DRIVER in the
geode’s GeodeAttrs field. This instructs the system to call the driver’s
DR_INIT and DR_EXIT functions as appropriate.

system indicates that the kernel relies upon the driver; it should remain
loaded as long as possible if the system is shutting down. (This has
ramifications for your DR_EXIT routine, discussed in “The
DriverFunction Type” on page 20.)

Most drivers will also want to be marked single, though if a library loads
a driver using GeodeUseDriver(), the driver will behave as
single-launchable regardless.

◆ library should declare any libraries that this driver needs to load. For
example, a PCMCIA driver needs to include the pcmcia library.

◆ The resource that contains the driver’s strategy routine, if it is not within
dgroup, needs to be declared as fixed, code, shared, and read-only. Most
other resources should be movable, if possible.

For information about any specific kind of driver, see the appropriate chapter,
if available, and check the device’s driver include file in
\OMNIGO\INCLUDE\INTERNAL. All device include file names end with
dr.def; for example, all mouse drivers must include the file mousedr.def.

Defining a Basic Driver

✹ 13

✈Driver Development

1.2.2 Information about the Driver
DriverTable, DriverInfoStruct, DriverAttrs, DriverType,

As mentioned before, a driver contains one common routine entry point: its
strategy routine. All functions executed by the driver are accessed through
this routine. The driver does this by interpreting the function code passed to
this strategy routine and executing another routine (through use of a jump
table) upon determining what the driver should do. The address of this
common strategy routine is contained within a DriverTable structure.

The DriverTable must reside in fixed memory. In most cases, this is
accomplished by placing the table within dgroup. However, on XIP systems
where dgroup needs to be marked discardable, the table should reside in a
read-only, fixed, code resource. (In the unlikely case that your dgroup
consists almost entirely of just a driver table, it is fine to leave the table in
dgroup and leave it non-discardable.)

The name DriverTable is significant. The linker searches for this table, and
locates the strategy routine in this manner. The first item within your
DriverTable must be a DriverInfoStruct structure. This structure
contains certain basic information about the driver, including the location of
the strategy routine.

The DriverInfoStruct has the following definition:

DriverInfoStruct struct

DIS_strategy fptr.far

DIS_driverAttributes DriverAttrs

DIS_driverType DriverType

DriverInfoStruct ends

DIS_strategy This is the address of the strategy routine. The strategy routine
must be in a fixed code resource.

DIS_driverAttributes
This field contains a DriverAttrs record. It specifies (in
general terms) what kind of device the driver handles. It also
specifies whether the driver is an extended driver.

Driver Basics

✹ 14

✈Driver Development

1.2

DIS_driverType
This field has a member of the DriverType enumerated type.
It specifies specifically what kind of device the driver drives.

The DIS_driverAttributes field contains a DriverAttrs record. This record
has the following fields:

DriverAttrs record

DA_FILE_SYSTEM:1,

DA_CHARACTER:1,

DA_HAS_EXTENDED_INFO:1,

:13

DriverAttrs end

DA_FILE_SYSTEM
The driver is for file access.

DA_CHARACTER
The driver is for a character-oriented device.

DA_HAS_EXTENDED_INFO
The driver is an extended driver; it provides extra information
and extra functionality (described below).

The DIS_driverType field contains a member of the DriverType enumerated
type. This type specifies what kind of driver this is. The type has the
following members:

DRIVER_TYPE_VIDEO

DRIVER_TYPE_INPUT

DRIVER_TYPE_MASS_STORAGE

DRIVER_TYPE_STREAM

DRIVER_TYPE_FONT

DRIVER_TYPE_OUTPUT

DRIVER_TYPE_LOCALIZATION

DRIVER_TYPE_FILE_SYSTEM

DRIVER_TYPE_PRINTER

DRIVER_TYPE_SWAP

DRIVER_TYPE_POWER_MANAGEMENT

Defining a Basic Driver

✹ 15

✈Driver Development

DRIVER_TYPE_TASK_SWITCH

DRIVER_TYPE_NETWORK

DRIVER_TYPE_SOUND

DRIVER_TYPE_PAGER

DRIVER_TYPE_PCMCIA

DRIVER_TYPE_FEP

DRIVER_TYPE_MAILBOX_DATA

DRIVER_TYPE_MAILBOX_TRANSPORT

DRIVER_TYPE_SOCKET

DRIVER_TYPE_SCAN

DRIVER_TYPE_OTHER_PROCESSOR

DRIVER_TYPE_MAILBOX_RECEIVE

DRIVER_TYPE_MODEM

DRIVER_TYPE_CONNECT_TRANSLATE

DRIVER_TYPE_CONNECT_TRANSFER

Code Display 1-1 A Sample DriverTable
;--
; dgroup data
;--

idata segment

; First, the driver info structure. Note that we name this structure as
; “DriverTable.”

DriverTable DriverInfoStruct <
MyStrategyRoutine,
<

0, ; not a DA_FILE_SYSTEM device driver
0, ; not a DA_CHARACTER device
0, ; no extended information

>,
DRIVER_TYPE_PCMCIA

>
; declare the table as public to prevent Esp from generating a warning.

public DriverTable

Driver Basics

✹ 16

✈Driver Development

1.2

; Place any other initialized data here

idata ends

udata segment

; Place your uninitialized data here

udata ends

1.2.3 Extended Drivers
If the driver is an extended driver (i.e., if the DA_HAS_EXTENDED_INFO bit
in the DIS_driverAttributes field is set), the device must use a slightly
different information structure. Instead of using a DriverInfoStruct, it
must begin its dgroup segment (or fixed, read-only, code resource) with a
DriverExtendedInfoStruct. The DriverExtendedInfoStruct has the
following definition:

DriverExtendedInfoStruct struct

DEIS_common DriverInfoStruct

DEIS_resource

hptr.DriverExtendedInfoTable

DriverExtendedInfoStruct ends

This structure’s first field is a regular DriverInfoStruct, so the segment
still begins with a DriverInfoStruct and a strategy routine, as is required.
The other field should contain the handle of a sharable lmem segment that
contains the driver’s DriverExtendedInfoTable.

Extended drivers must have a DriverExtendedInfoTable structure. This
structure, with its associated data, is generally put in its own resource, a
sharable LMem heap. The resource need not (indeed, should not) be fixed.
The DriverExtendedInfoTable structure must be at the beginning of the
resource. The DriverExtendedInfoTable structure has the following
definition:

DriverExtendedInfoTable struct

Defining a Basic Driver

✹ 17

✈Driver Development

DEIT_common LMemBlockHeader

DEIT_numDevices word

DEIT_nameTable nptr.lptr.char

DEIT_infoTable nptr.word

DriverExtendedInfoTable ends

DEIT_common
This is the standard LMem block header structure. You must
initialize this to “{} ”. Do not attempt to fill in this field
yourself; Esp will fill in this field appropriately.

DEIT_numDevices
This is the number of different devices supported by this driver.

DEIT_nameTable
This is a near pointer to an array of chunk handles. Each chunk
handle is the handle of a chunk containing the name of a
supported device as a null-terminated string. There must be
DEIT_numDevices different entries in the table.

DEIT_infoTable
This field contains a near pointer to an array of words. Each
word contains driver-specific information for each device. The
nature of this information depends on what kind of device
driver this is; the data kept in this word is discussed in Code
Display 1-2.

For example, suppose you are writing an extended driver that supports three
different sound cards. You might set up your driver’s informational
structures like this:

Code Display 1-2 A Driver’s Informational Structures
;--
; dgroup data
;--

idata segment

; First, the driver info structure. This is an extended driver, so we use the
; DriverExtendedInfoStruct:

Driver Basics

✹ 18

✈Driver Development

1.2

DriverTable DriverExtendedInfoStruct <
<MySoundStrategy, ; the strategy routine

mask DA_HAS_EXTENDED_INFO,; ; the DriverAttrs record
DRIVER_TYPE_SOUND>, ; The DriverType

MySoundExtendedInfoSegment>

idata ends

;--
; Extended info segment
;--

MySoundExtendedInfoSegment segment lmem LMEM_TYPE_GENERAL

; First, the DriverExtendedInfoTable. This must be at the beginning of the
; resource.

MySoundExtendedDriverInfoTable DriverExtendedInfoTable <
{}, ; The LMemBlockHeader;

; Esp will fill this in
length MySoundBoardNames,

; The number of boards supported
offset MySoundBoardNames,

; near-pointer to table of chunk handles
offset MySoundBoardInfoTable

; near-pointer to table of data words
>

; Now, a table of chunk handles. The chunks contain the names of the different
; boards supported.

MySoundBoardNames lptr.char FooSound1_0,
FooSound2_0,
Knockoff1_2

 lptr.char 0

; Now, the names themselves.

LocalDefString FooSound1_0 <'FooCo Soundarama 1.0', 0>
; The string must be null-terminated

LocalDefString FooSound2_0 <'FooCo Soundarama 2.0', 0>
LocalDefString Knockoff1_2 <'KnockOff SoundClone 1.2', 0>

; And the data words.

MySoundBoardInfoTable word
SoundWordOfData <1,1,1,>,
SoundWordOfData <1,1,1,>,
SoundWordOfData <1,1,1,>

Defining a Basic Driver

✹ 19

✈Driver Development

MySoundExtendedInfoSegment ends

The drivers for some kinds of devices must be extended drivers.
Furthermore, some devices require you to use a certain special InfoStruct,
the first field of which is a DriverExtendedInfoStruct or
DriverInfoStruct. For example, if you are writing a mouse driver, you must
begin its driver table segment with a MouseDriverInfoStruct, the first
field of which is a DriverExtendedInfoStruct.

1.2.4 The Strategy Routine
Every driver must have a strategy routine. This routine is called by the GEOS
kernel and by libraries. The strategy routine is passed a code telling it what
it should do. The strategy routine acts accordingly. Generally, the strategy
routine contains a jump table; it calls a different routine, using the passed
code as an offset into the jump table. (All the passed codes are even numbers,
to facilitate jumping through a table of near-pointers.)

1.2.4.1 What Functions Must Be Handled?

DriverFunction, DriverExtendedFunction

The strategy routine must be in a fixed resource. As noted above in
“Information about the Driver” on page 13, you should put a pointer to the
routine in the driver’s DriverInfoStruct.

The strategy routine is always passed at least one argument, in the di
register. This argument value specifies what the strategy routine should do.
(Other arguments may be passed, depending on what is in di ; the return
value also depends on the passed value of di .) di may contain one of the
following four things:

◆ A member of the DriverFunction enumerated type, the most elemental
of all driver functions. This type contains four values: DR_INIT, DR_EXIT,
DR_SUSPEND, and DR_UNSUSPEND. All drivers must be able to handle
these four functions. (The DriverFunction type is discussed below in
“The DriverFunction Type” on page 20.)

Driver Basics

✹ 20

✈Driver Development

1.2

◆ A member of the DriverExtendedFunction enumerated type. These
will only be sent to extended drivers. This type contains two values:
DRE_TEST_DEVICE and DRE_SET_DEVICE. All extended drivers must be
able to handle these functions. (The DriverExtendedFunction type is
discussed below in “The DriverExtendedFunction Type” on page 24.)

◆ A function type specific to the kind of device-driver this is. (For example,
PCMCIA drivers should handle the PCMCIAFunction codes.) Different
types of drivers, of course, need to handle different functions. Mouse
drivers, for example, have to handle different functions than print
drivers do. The device-specific codes are discussed in the chapter relating
to those drivers.

◆ An escape code. If the high bit of di is set, an escape code is being sent.
Different drivers will react to this in different ways. Some drivers will not
have to handle escape codes at all.

1.2.4.2 The DriverFunction Type

DR_INIT, DR_EXIT, DR_SUSPEND, DR_UNSUSPEND

Every driver, of whatever type, must handle the four functions specified by
the DriverFunction type. Even if a device driver wishes to do nothing upon
receipt of an event, it must at least handle the function code itself. These
functions are bound to the even integers from zero to six. Each of these
functions has its own pass and return conventions.

■ DR_INIT

This is sent to the driver when it is first loaded. Typically, a driver will set up
whatever interrupt handlers it may have. You might also wish to load any
state variables that the driver needs

Pass: di DR_INIT (= 0).
cx value of di passed to GeodeLoad. If the driver was not

loaded through GeodeLoad, the value in this register is
undefined.

dx value of bp passed to GeodeLoad. If the driver was not
loaded through GeodeLoad, the value in this register is
undefined.

Returns: CF Set if initialization failed; the system will then automatically
unload the driver.

Defining a Basic Driver

✹ 21

✈Driver Development

Destroyed: Allowed to destroy ax , cx , dx , ds , es , di , si , bp

Include: driver.def

■ DR_EXIT
This is sent to the driver when it is being unloaded. Typically, drivers
unregister any interrupt handlers they may have set up.

If the driver is a system driver (i.e., system is set within its geode parameters
file) then the handler for this function, and any information that handler
needs, must reside in fixed memory. This allows the driver to be unloaded at
the last possible moment.

Pass: di DR_EXIT (= 2).

Returns: Nothing.

Destroyed: Allowed to destroy ax , bx , cx , dx , ds , es , di , si .

Include: driver.def

■ DR_SUSPEND
This is sent to the driver if GEOS is attempting to task-switch out. The driver
may refuse to suspend itself.

Pass: di DR_SUSPEND (=4).
cx:dx Pointer to a buffer of length

DRIVER_SUSPEND_ERROR_BUFFER_SIZE (defined in
driver.def as 128 bytes).

Returns: CF Set if the driver refuses to suspend. The driver should then
write a null-terminated explanatory message, using the
standard GEOS character set, to the buffer pointed to by
cx:dx .

Destroyed: Allowed to destroy ax , di .

Include: driver.def

■ DR_UNSUSPEND
This is sent to the driver if GEOS is being task-switched back into memory.

Pass: di DR_UNSUSPEND (=6).

Returns: Nothing.

Destroyed: Allowed to destroy ax , di .

Driver Basics

✹ 22

✈Driver Development

1.2

1.2.4.3 Writing the Strategy Routine

As noted, the strategy routine is the single entry point upon which a driver
executes code. That routine determines what the driver needs to do, and calls
the appropriate function from that point.

Code Display 1-3 A Sample Strategy Routine
DefPFunction macro routine, constant
.assert ($-pfuncs) eq constant*2, <Routine is not in the right slot!>
.assert (type routine eq far), <Routine is not declared far!>

fptr.far routine
endm

Resident segment resource

pfuncs label fptr.far
;
;Handle the basic four DriverFunction types
;

DefPFunction MyInit, DR_INIT
DeFPFunction MyExit, DR_EXIT
DefPFunction MySuspend, DR_SUSPEND
DefPFunction MyUnsuspend, DR_UNSUSPEND

;
; If this is an extended driver, they would appear here
; Otherwise, begin the enumerations peculiar to this driver
;

DefPFunction MyCustomRoutine DR_MYDRIVER_CUSTOM_ROUTINE

;
; Write the strategy routine itself
;

MyStrategy proc far
uses ds, es
.enter

; Make sure we can handle the function

cmp di, MyFunction
jae fail
test di, 1 ; check whether the function code is odd (invalid)
jnz fail

Defining a Basic Driver

✹ 23

✈Driver Development

; Now call the appropriate driver routine. Load DS and ES with our dgroup
; for future use

segmov ds, dgroup, ax
mov es, ax
shl di
pushdw cs:[pfuncs][di]
call PROCCALLFIXEDORMOVABLE_PASCAL

done:

.leave
ret

fail:

stc ; set carry if we can’t support
jmp done

MyStrategy endp

MyDoNothing proc far

clc
ret

MyDoNothing endp

Resident ends

Init segment resource

MyInit proc far

; Handle DR_INIT

MyInit endp

MyExit proc far

; Handle DR_EXIT

MyExit endp

Init ends

Driver Basics

✹ 24

✈Driver Development

1.2

1.2.4.4 The DriverExtendedFunction Type

DRE_TEST_DEVICE, DRE_SET_DEVICE, DevicePresent,
EnumerateDevice

All extended drivers must be able to handle the two functions specified by the
DriverExtendedFunction type. These are defined in the file driver.def.
Because these types are enumerated following the DriverFunction types,
they contain a value of either 8 or 10.

This file also provides a useful macro for extended drivers,
EnumerateDevice. This macro locks the block containing the extended
driver info, and searches through the name table for the device string passed.
This is very useful for handling functions.

■ DRE_TEST_DEVICE
This function instructs the driver to test whether the device needing to be
driven is one which is actually able to run, and is present on the system. The
null-terminated string name of the device is passed. The strategy routine
should return a member of the DevicePresent enumerated type. There are
four possible return values:

DP_NOT_PRESENT
Driver knows that the device is not there.

DP_CANT_TELL
Driver isn’t sure whether the device is there.

DP_PRESENT
Driver knows that the device is there.

DP_INVALID_DEVICE
The string passed does not contain the name of a device
supported by the driver.

Pass: di DRE_TEST_DEVICE (= 8).
dx:si Pointer to null-terminated string containing the name of the

device.

Returns: ax A member of the DevicePresent enumerated type.
CF Set if ax = DP_INVALID_DEVICE, clear otherwise.

Defining a Basic Driver

✹ 25

✈Driver Development

Tips & Tricks: The EnumerateDevice macro is useful for checking if the string is the
name of a supported device. You may use the returned table index to
reference another table of test routines.

■ DRE_SET_DEVICE
This function informs the driver which of its devices it is to support.

Pass: di DRE_SET_DEVICE (= 10).

Pass: dx:si Pointer to a null-terminated string containing the name of
the device.

Returns: Nothing.

Destroyed: Allowed to destroy di .

Tips & Tricks: The EnumerateDevice macro is useful for checking if the string is the
name of a supported device. You may use the returned table index to
reference another table of test routines.

■ EnumerateDevice
EnumerateDevice <infoRes>

This macro checks if a string contains the name of a device supported by the
driver. If it does, the macro locks the resource containing the driver’s
extended information.

Pass: infoRes Name of the resource containing the driver’s extended
information.

dx:si Pointer to null-terminated string containing name of device.

Returns: CF Clear if passed string matches name of device supported by
the driver; set otherwise.

ax If CF is set, ax contains DP_INVALID_DEVICE; otherwise, ax
is destroyed.

bx Handle of resource containing extended information.
es If CF is clear, es contains segment address of locked block

containing extended information; otherwise, es is destroyed.
di If CF is clear, di contains the device’s place in the driver’s

information table. The first device has a “place” of zero, the
next device is two, the next is four, etc.
If CF is set, di is destroyed.

Destroyed: cx , ds

Warning: If the macro succeeds in matching the string to a device, it will lock the block
containing the driver’s extended information and return the block’s segment
address in es . Be sure to unlock this block when you’re done with it.

Driver Basics

✹ 26

✈Driver Development

1.2

1.2.5 Escape Codes
DriverEscCode

Some kinds of drivers may be passed escape codes. An escape code is passed
to the strategy routine in di , just like a function code. All escape codes have
the sign bit set; they can thus be easily distinguished from other function
codes, which have the sign bit cleared.

DriverEscCode etype word, 8000h, 1

How a driver responds to an escape code depends on what kind of device the
driver controls. Each kind of device has its own conventions for handling
escape sequences, if it handles them at all.

✈Mouse Drivers

2

✈

2.1 Mouse Drivers .. 29
2.1.1 Data Structures ..29
2.1.2 Functions...30

✹ 28

✈Driver Development

Mouse Drivers

✹ 29

✈Driver Development

2.1

Most GEOS platforms will use some kind of pointing device. On desktop
machines, this is most commonly a mouse; in any event, these pointing
devices share many similarities with mice. Accordingly, all these devices are
driven by drivers known collectively as mouse drivers.

2.1 Mouse Drivers
Most mouse drivers behave in very similar ways. For this reason, most GEOS
mouse drivers share a lot of code. This code is provided in the SDK in the files
\OMNIGO\DRIVER\DDK\MOUSE\MOUSECOM.ASM and
...\MOUSE\MOUSESER.ASM. That directory also contains several GEOS
mouse drivers; these demonstrate how the drivers actually use the common
code to perform such tasks as send mouse movements to the system, handle
strategy-routine requests, etc.

2.1.1 Data Structures
All mouse drivers must be extended drivers, even if they support only one
kind of mouse. A mouse driver’s dgroup segment must begin with the
MouseDriverInfoStruct structure. This structure is based on the
DriverExtendedInfoStruct structure, but has some extra fields:

MouseDriverInfoStruct struct

MDIS_common DriverExtendedInfoStruct

<<0, mask DA_HAS_EXTENDED_INFO,

DRIVER_TYPE_INPUT>,

0>

MDIS_numButtons word ?

MDIS_xRes word ?

MDIS_yRes word ?

MDIS_flags MouseDriverInfoFlags 0

MouseDriverInfoStruct ends

Mouse Drivers

✹ 30

✈Driver Development

2.1

MDIS_numButtons
This is the number of buttons the supported mouse has.

MDIS_xRes, MDIS_yRes
This is the number of points per inch, of the points collected by
the pointing device. Mouse drivers generally have these set to
zero; the fields are used for other input devices that use mouse
drivers, such as pen-screens.

MDIS_flags A record of MouseDriverInfoFlags. These flags store
miscellaneous information about the mouse.

Each MouseDriverInfoStruct stores a word of MouseDriverInfoFlags.
This record has only a single flag:

MDIF_KEYBOARD_ONLY
This driver is actually a keyboard-driven mouse driver, i.e. the
user doesn’t have a real mouse.

Every mouse driver must set up an extended information resource, as
described above in "Driver Basics," Chapter 1. This resource must contain a
DriverExtendedInfoTable, which (among other things) contains a pointer
to an array of data words, one word for each supported mouse. These data
words must contain a MouseExtendedInfo record. This record has the
following flags:

MEI_SERIAL Set if the device is a serial mouse, and needs a COM port to
operate.

MEI_GENERIC
Set if this is a generic mouse and needs a DOS-level driver.

MEI_IRQ This field is four bits wide. If it is set, the mouse needs to be told
at what interrupt level it is operating (i.e. it is a “bus” mouse).
This field should contain the factory-set default value.

MEI_CALIBRATE
Set if this mouse can be calibrated within GEOS.

2.1.2 Functions
Mouse drivers must be able to handle all four functions defined by
DriverFunction, and both functions defined by

Mouse Drivers

✹ 31

✈Driver Development

2.1

DriverExtendedFunction. Furthermore, they must be able to handle the
functions defined by MouseFunction, a special enumerated type defined in
mousedr.def.

As usual, the first of these function names is an enumerated equal to 12 (or
two past the last DriverExtendedFunction), and the constants increase by
two thereafter.

■ DR_MOUSE_SET_RATE
The mouse should set the number of times it reports per second.

Pass: cx The report rate the mouse should be set to, in number of
reports per second.

Returns: cx The actual new report rate for the mouse, again in number of
reports per second.

Destroyed: Allowed to destroy di and ax .

Include: mousedr.def

■ DR_MOUSE_SET_ACCELERATION
The mouse should set its acceleration rate.

Pass: cx The threshold for acceleration (i.e. if the mouse moves this
many pixels in 1/30 second, acceleration should start).

dx Acceleration multiplier once threshold is met.

Returns: Nothing.

Destroyed: Nothing.

Include: mousedr.def

■ DR_MOUSE_GET_ACCELERATION
The mouse should return its current acceleration rate.

Pass: Nothing.

Returns: cx The threshold for acceleration (i.e. if the mouse moves this
many pixels in 1/30 second, acceleration should start).

dx Acceleration multiplier once threshold is met.

Destroyed: Nothing.

Include: mousedr.def

Mouse Drivers

✹ 32

✈Driver Development

2.1

■ DR_MOUSE_COMBINE_MODE
The mouse should set the mode for combining mouse events. This is a
member of the (byte-sized) MouseCombineMode enumerated type:

MCM_ COMBINE

MCM_NO_COMBINE

MCM_COMBINE_COLINEAR_ONLY

Pass: cl MouseCombineMode to use.

Returns: Nothing.

Destroyed: Nothing.

Include: mousedr.def

■ DR_MOUSE_GET_COMBINE_MODE
The mouse should return the mode it uses for combining mouse events. This
is a member of the (byte-sized) MouseCombineMode enumerated type,
described above on page 32.

Pass: Nothing.

Returns: cl Current MouseCombineMode.

Destroyed: Nothing.

■ DR_MOUSE_GET_CALIBRATION_POINTS
This instructs the mouse driver to return its current set of calibration points.

Pass: dx:si Buffer to which to write calibration points. This buffer will be
long enough to hold nine i.e.
MAX_NUM_CALIBRATION_POINTS) calibration points.

Returns: dx:si Pointer to same buffer, filled with calibration points
cx Number of calibration points

Destroyed: Nothing

■ DR_MOUSE_SET_CALIBRATION_POINTS
This instructs the mouse driver to set its calibration points.

Pass: dx:si Buffer filled with adjusted calibration points.
cx Number of calibration points.

Returns: Nothing.

Mouse Drivers

✹ 33

✈Driver Development

2.1

Destroyed: Nothing.

■ DR_MOUSE_GET_RAW_COORDINATE
This instructs the mouse driver to return the current calibrated and
non-calibrated mouse positions.

Pass: Nothing.

Returns: CF Clear if point returned, set otherwise.
(ax,bx) Current raw (uncalibrated) mouse position, if CF = 0.
(cx,dx) Current adjusted (calibrated) mouse position, if CF = 0.

Destroyed: Nothing.

Mouse Drivers

✹ 34

✈Driver Development

2.1

✈PCMCIA Drivers

3

✈

3.1 PCMCIA Drivers ... 37
3.1.1 State Information...37
3.1.2 Handling Basic Functions...38
3.1.3 PCMCIA Driver Functions ...41

3.2 PCMCIA Library Functions 47

3.3 CardServices Functions.. 48

3.4 CardServices Events ... 51

✹ 36

✈Driver Development

PCMCIA Drivers

✹ 37

✈Driver Development

3.1

This chapter explains the fundamentals associated with writing a PCMCIA
driver for GEOS. Life for a PCMCIA driver— as with a human being— begins
and ends with traumatic events. The driver’s birth begins with the insertion
of a card into the device; its death is marked by the removal of that card.
When writing a PCMCIA driver, you may want to contemplate your own end
and handle the removal case elegantly, for the driver’s sake if not for your
own.

When a card is first inserted into a PCMCIA “socket” (or “slot”) GEOS will load
all drivers for that card that it finds, one after the other. Those that are found
to be compatible with the card remain loaded as long as the card remains
within the chosen socket. The removal of a card is the other big event in the
PCMCIA driver’s life. At that point, if anything is actively using the card, the
driver can raise an objection to that removal and attempt to resolve any
conflicts that arise.

A PCMCIA driver is a complex driver; there are many other events besides
insertion and removal that a typical driver will need to handle. These events
are usually functions of CardServices, a third-party library licensed to
Geoworks, and, more specifically, the GEOS PCMCIA library interface to
CardServices. This chapter is not meant to document all of these complex
cases because drivers, whether file system or serial, may exhibit vastly
different characteristrics. You will want to consult the pcmcia.def file on the
SDK for more information on handling these functions.

A PCMCIA sample driver that you may use as a template is available in
\OMNIGO\DRIVER\DDK\PCMCIA\SAMPLE. Other (functioning) drivers are
located within \OMNIGO\DRIVER\DDK\PCMCIA.

3.1 PCMCIA Drivers
Writing a GEOS device driver for PCMCIA cards is somewhat different than
writing a driver for other devices. The driver acts not only with the device,
but with the PCMCIA library (a GEOS library) and CardServices.

A PCMCIA driver must handle the four basic DriverFunction calls and
must also handle the specific PCMCIAFunction calls defined in

PCMCIA Drivers

✹ 38

✈

3.1

Driver Development

pcmciaDr.def. PCMCIA drivers are not extended, so they do not need to
handle the DriverExtendedFunction calls.

Because your driver must interact with CardServices, it must also define a
callback routine handling the specific CardServicesEventCode types. It
will also need to send function calls to CardServices using the
CardServicesFunction type.

3.1.1 State Information
A PCMCIA driver needs to maintain information about the card(s) and
socket(s) that it is driving. The “socket” refers to the physical slot of the
PCMCIA hardware interface. (This should not be confused with the GEOS
Socket library API.) Each driver should contain the capability to support
multiple sockets since hardware platforms may contain multiple PCMCIA
ports. Also, CardServices may map multiple logical sockets to a single
physical socket; this allows CardServices to mimic multi-function cards.

A driver should keep information about each socket in some structure table.
The information stored in this table is, of course, up to the driver. Examples
of information that may be necessary:

◆ The socket number.

◆ Whether the card was removed while it was in use.

◆ How the card was configured. This depends on the requirements of the
device.

3.1.2 Handling Basic Functions
DR_INIT, DR_EXIT

Your PCMCIA driver will need to handle the basic DR_INIT and DR_EXIT
routines defined in driver.def. (There usually is not any need to handle
DR_SUSPEND and DR_UNSUSPEND.) Because PCMCIA drivers are not
extended, there is no need to handle DRE_TEST_DEVICE and
DRE_SET_DEVICE.

PCMCIA Drivers

✹ 39

✈Driver Development

3.1

3.1.2.1 Insertion

As noted, the insertion or removal of a PCMCIA card are the two most
important events in the driver’s life. When a driver is first loaded, it registers
with CardServices. Among other things, this registration allows the driver to
be told when a card is inserted. (Be patient; this is not as non-sensical as it
seems.)

Of course, inserting a card prompted the registration in the first place! This
only means that the driver is guaranteed to receive notification that at least
one card was inserted, after registration with CardServices is complete. Once
informed of this event (or additional insertion events), the driver must
examine the card (now within a “socket”) to discern whether it can support
the card. If the card is compatible, the driver configures the card according to
its own specifications and makes its devices and/or memory available to
GEOS.

3.1.2.2 Removal

The removal of a PCMCIA card is a difficult event for a PCMCIA driver. The
driver may be writing a file to the card; it may be communicating something
over the serial line. No one wants to “go” when confronted with the tasks still
remaining, but unlike us, a PCMCIA driver has the option of objecting to its
removal.

If something is actively using the card, the driver must tell the PCMCIA
library to object to the card’s removal. The library will inform the user that
the removal was effected under hostile protest. The user then has the option
of reinserting the card and either leaving it in (and allowing whatever
objected to the removal finish its business) or force GEOS to stop accessing
the card (for example, by closing applications). The user always has the
option of rebooting the system if the card is no longer available.

The last thing a driver will do is unregister itself with CardServices.
Afterward, the socket is closed and the driver is unloaded.

■ DR_INIT
This function is sent to the driver by the kernel when the driver is first
loaded. A PCMCIA device driver should handle this call by registering as a

PCMCIA Drivers

✹ 40

✈

3.1

Driver Development

CardServices client. It does this by invoking the CardServicesFunction
CSF_REGISTER_CLIENT event. (See “PCMCIA Library Functions” on page
49.) This registration is a separate issue than registration with the PCMCIA
library itself; that should take place in your DR_PCMCIA_CHECK_SOCKET
routine. (At that time, the driver will know into which socket the card was
inserted.)

The driver should return carry set (failure) only if it is incompatible with
CardServices or the current environment in some way. The driver cannot
consult the card to see if it supports it yet; it does not yet know into what
socket the card was inserted. (That information is provided at a later time by
the CSEC_CARD_INSERTION event from CardServices.)

This function is guaranteed to occur before a DR_PCMCIA_CHECK_SOCKET
event; that function must wait for the registration (initiated by this handler)
to be complete before checking whether the card is supported.

Pass: di DR_INIT (= 0).
cx value of di passed to GeodeLoad. If the driver was not

loaded through GeodeLoad, the value in this register is
undefined.

dx value of bp passed to GeodeLoad. If the driver was not
loaded through GeodeLoad, the value in this register is
undefined.

Returns: CF Set if initialization failed; the system will then automatically
unload the driver.

Destroyed: Allowed to destroy ax , cx , dx , ds , es , di , si , bp

Include: driver.def

Code Display 3-1 Sample DR_INIT Routine
SampleInit proc far

.enter

; If you will need another driver to get your work done, retrieve its
; strategy routine here and store it. Fetching the strategy routine of
; another driver involves loading in the core block, which we can’t do at
; interrupt time.

; Register as a CardServices client. We do this by retrieving the address
; of the callback routine (which must be in fixed memory) and sending
; CSF_REGISTER_CLIENT to CardServices.

PCMCIA Drivers

✹ 41

✈Driver Development

3.1

mov di, segment SampCardServicesCallback
mov si, offset SampCardServicesCallback
mov cx, size regArgList
segmov es, cs
mov bx, offset regArgList
CallCS CSF_REGISTER_CLIENT
jc fail

;
; ds is assumed loaded by the strategy routine ...
;

mov ds:[csHandle], CS_HANDLE_REG
clc

done:
.leave
ret

fail:
stc
jmp done

SampleInit endp

;
; Set this thing up appropriate to the card you’re driving.
;
; In some cases, your driver may manage an I/O device but register as
; a memory client to make sure the automatic configuration client
; gets called to configure the card before this driver gets called.
; It depends on who does the actual configuration for the cards you
; manage.
;

regArgList CSRegisterClientArgs <
mask CSRCAA_ARTIFICIAL_EXCLUSIVE or mask CSRCAA_ARTIFICIAL_SHARED or \

mask CSRCAA_MCD,
mask CSEM_CARD_DETECT_CHANGE,
< 0, segment dgroup, 0, 0>,
0201h

>

Init ends

PCMCIA Drivers

✹ 42

✈

3.1

Driver Development

■ DR_EXIT
This function is sent to a driver by the kernel when it is being unloaded. A
PCMCIA device driver should handle this call by at least de-registering as a
CardServices client. It does this by sending the CSF_DEREGISTER_CLIENT
event defined in the PCMCIA library. The driver should also release any
resources it may have requested from CardServices.

Pass: di DR_EXIT (= 2).

Returns: Nothing.

Destroyed: Allowed to destroy ax , bx , cx , dx , ds , es , di , si .

Include: driver.def

Code Display 3-2 Sample DR_EXIT Routine
SampleExit proc far

uses ax, cx, dx
.enter

clr cx
mov dx, ds:[csHandle]
CallCS CSF_DEREGISTER_CLIENT

clc
.leave
ret

SampleExit endp

3.1.3 PCMCIA Driver Functions
DR_PCMCIA_CHECK_SOCKET, DR_PCMCIA_OBJECTION_RESOLVED,
DR_PCMCIA_CLOSE_SOCKET, DR_PCMCIA_DEVICE_ON,
DR_PCMCIA_DEVICE_OFF

In addition to handling the basic functions, a PCMCIA driver must be able to
handle the functions defined by PCMCIAFunction, a special enumerated
type defined in pcmciaDr.def.

PCMCIA Drivers

✹ 43

✈Driver Development

3.1

The first of these function names is an enumerated value equal to 8 (or two
past the last DriverFunction), and the constants increase by two
thereafter.

■ DR_PCMCIA_CHECK_SOCKET
The PCMCIA library calls this function when a card has been inserted into the
device. This function will only occur after a DR_INIT has already occurred;
that function should register the socket as a CardServices client.

In your handler for this function, make sure to wait for the registration with
CardServices to complete. (This is typically done with a wait loop; the loop
checks the state of a driver flag indicating whether notification has been
completed.) After this has occurred, the PCMCIA driver should also check the
socket for compatibility with the card inserted.

This function typically takes place after a CSEC_CARD_INSERTION event has
occurred. Drivers should respond to a CSEC_CARD_INSERTION event by
setting a driver flag indicating whether the indicated driver supports the
card.

A driver responding to a DR_PCMCIA_CHECK_SOCKET should wait until
registration is complete (by receipt of a CSEC_REGISTRATION_COMPLETE
event). At that point, they can test whether the CSEC_CARD_INSERTION
event occurred smoothly.

If the card is supported, the driver should then register with the PCMCIA
library using PCMCIARegisterDriver. This will register your driver with
the PCMCIA library for the particular card in the particular socket . Note that
this is a separate registration than that with CardServices.

Pass: cx Socket number.
di DR_PCMCIA_CHECK_SOCKET

Returns: CF Set if PCMCIA card in the socket is supported by the driver.

Destroyed: di

Include: pcmciaDr.def

PCMCIA Drivers

✹ 44

✈

3.1

Driver Development

Code Display 3-3 Sample DR_PCMCIA_CHECK_SOCKET Routine
SampIeCheckSocket proc far
socket local word push cx

uses ax, bx, cx, dx, si
.enter

;
; Wait to make sure we’ve received all the artificial insertion
; events so we know whether we support the card.
;

waitForRegistrationLoop:
tst ds:[amRegistered]
jz waitForRegistrationLoop

;
; See if we support the thing.
;

call SampUDerefSocket
CheckHack <SCS_NO eq 0>

tst ds:[bx].SSI_support
jnz processIt

fail:
clc ; not our card

done:
.leave

ret

processIt:
;
; If the card has been configured by someone outside of this driver,
; here’s where you’d fetch the configuration info from Card Services
; and tell other people about it so the thing can be used within
; GEOS.
;

PrintMessage <INSERT CODE HERE>

;
; Register with the library, finally.
; bx <- geode handle
; cx <- socket

PCMCIA Drivers

✹ 45

✈Driver Development

3.1

; dx <- cs handle
; es:di <- CSRegisterClientArgs
; ax:si <- cs callback
;

mov bx, vseg regArgList
call MemLockFixedOrMovable
mov es, ax
mov di, offset regArgList

mov bx, handle 0

mov cx, ss:[socket]

segmov ds, dgroup, ax
mov dx, ds:[csHandle]

mov ax, segment SampCardServicesCallback
mov si, offset SampCardServicesCallback
call PCMCIARegisterDriver

mov bx, vseg regArgList
call MemUnlockFixedOrMovable

stc ; happy happy happy
jmp done

SampIeCheckSocket endp

■ DR_PCMCIA_OBJECTION_RESOLVED
The PCMCIA library calls this function when the user has answered an
objection raised to the removal of a card. The function passes a
PCMCIAObjectionResolution type in dx indicating the nature of the
resolution. If that value is PCMOR_CLEAN_UP, then the user has asked that
the card be ejected. The driver should attempt to remove any references to
the card.

PCMCIAObjectionResolution etype word, 0, 1

PCMOR_CLEAN_UP enum PCMCIAObjectionResolution

PCMOR_USER_CANCELED enum PCMCIAObjectionResolution

PCMOR_SYSTEM_CANCELED enum PCMCIAObjectionResolution

If the user of system cancelled the removal, the driver should simply note
that the objection has been resolved.

PCMCIA Drivers

✹ 46

✈

3.1

Driver Development

A driver should always respond to the PCMOR_CLEAN_UP event, even if it
did not raise an objection, as the user may not have actually removed the
card. This allows the driver to clean up before a card is removed (for example
if the user is initiating an ejection of the card through software control).

Pass: cx Socket number.
dx PCMCIAObjectionResolution.
di DR_PCMCIA_OBJECTION_RESOLVED

Returns: CF (Only meaningful if PCMOR_CLEAN_UP was passed)
Clear if the driver was able to remove all references to the
card; set otherwise.

Destroyed: di

Include: pcmciaDr.def

Code Display 3-4 Sample DR_PCMCIA_OBJECTION_RESOLVED Routine
SampleObjectionResolved proc far

.enter
CheckHack <PCMOR_CLEAN_UP eq 0>

tst_clc dx
jz attemptCleanUp

;
; In theory, since the removal was canceled and the card is back, we’d
; release any access blocks we might have placed, allowing the card to
; be reached again.... we currently set no blocks, though, so this
; is a nop.
;

PrintMessage <MAYBE INSERT CODE HERE>

done:
.leave
ret

attemptCleanUp:
;
; Here’s where you’d try to get the things that are using the card to
; stop using them. Sometimes you can’t do that, in which case you
; return carry set if the card is still in-use. If you can, though,
; try for a bit and occasionally call SampCSCheckCardInUse to see if
; the card’s still in use.
;

PCMCIA Drivers

✹ 47

✈Driver Development

3.1

PrintMessage <INSERT CODE HERE>
call SampCSCheckCardInUse
jmp done

SampleObjectionResolved endp

■ DR_PCMCIA_CLOSE_SOCKET
The PCMCIA library calls this function when it is about to close a socket; the
driver should respond by cleaning up any auxiliary structures created during
DR_PCMCIA_CHECK_SOCKET. The PCMCIA library only sends this function
if no one has objected to the removal of the card. The driver, at this point, is
about to be unloaded.

Pass: cx Socket number.
di DR_PCMCIA_CLOSE_SOCKET

Returns: Nothing.

Destroyed: di

Include: pcmciaDr.def

Code Display 3-5 Handling DR_PCMCIA_CLOSE_SOCKET
SampleCloseSocket proc far

uses ax, di, ds, bx, cx
.enter

;
; Here you’d tell the rest of the world that the thing no longer
; exists. At this point, we know the card wasn’t being used, and
; things should have been done in SampleHandleRemoval to ensure that
; no one could start using the card after that routine returned.
;

PrintMessage <INSERT CODE HERE>
.leave
ret

SampleCloseSocket endp

PCMCIA Drivers

✹ 48

✈

3.1

Driver Development

■ DR_PCMCIA_DEVICE_ON
The PCMCIA library calls this function in response to a request (by the power
management driver) to turn power on to an indicated socket. This may occur
when someone wishes to turn on a socket and the library believes that power
is off (for example, after a DR_PCMCIA_DEVICE_OFF function or a
CSEC_CARD_INSERTION event). The driver may either call
PCMCIASocketOn or its own custom function in response to this request.

Only drivers that invoke the Card Services CSF_REQUEST_CONFIGURATION
function will receive this function. (Drivers may also steal configuration
ownership through PCMCIAChangeConfigurationOwner.)

Pass: cx Socket number.
di DR_PCMCIA_DEVICE_ON

Returns: Nothing.

Destroyed: di

Include: pcmciaDr.def

■ DR_PCMCIA_DEVICE_OFF
The PCMCIA library calls this function in response to a request to turn power
off to the indicated socket. (The library ensures that a sufficient time elapses
without a subsequent request to turn the power on.) The driver may either
call PCMCIASocketOff or its own custom function in response to this
request.

Only drivers that invoke the Card Services CSF_REQUEST_CONFIGURATION
function will receive this function. (Drivers may also steal configuration
ownership through PCMCIAChangeConfigurationOwner.)

Pass: cx Socket number.
di DR_PCMCIA_DEVICE_OFF

Returns: Nothing.

Destroyed: di

Include: pcmciaDr.def

PCMCIA Library Functions

✹ 49

✈Driver Development

3.2

3.2 PCMCIA Library Functions
As noted, a PCMCIA driver will interact with both a PCMCIA library and,
through that library, CardServices. The PCMCIA library provides a number
of routines to aid in communicating with CardServices.

■ PCMCIARegisterDriver
This routine registers a PCMCIA device driver in the indicated socket. This
routine is usually called after the driver is first called with
DR_PCMCIA_CHECK_SOCKET for each supported card.

Pass: cx The socket number.
bx The driver’s GeodeHandle.
es:di CSRegisterClientArgs passed to CardServices.
ax:si The CardServices callback routine.
dx The CardServices client handle for the driver.

Returns: Nothing.

Destroyed: ax

Include: pcmcia.def

■ PCMCIAObjectToRemoval
This routine notes a driver’s objection to the removal of a card from the
device. In calling this routine, the driver is dedicated to wait for a
DR_PCMCIA_OBJECTION_RESOLVED function before taking further action
with the card.

Pass: cx The socket number.
dx Set (non-zero) if the card is non-removable.
bp Handle of the driver.

Returns: Nothing.

Destroyed: ax, di

Include: pcmcia.def

■ PCMCIAExclusiveGranted
This routine should be called to acknowledge that a driver has received a
CSEC_EXCLUSIVE_COMPLETE.

Pass: bx Handle of the driver geode.

PCMCIA Drivers

✹ 50

✈

3.3

Driver Development

Returns: Nothing.

Destroyed: Nothing.

Include: pcmcia.def

3.3 CardServices Functions
A driver must contact CardServices through use of CardServicesFunction
types defined in pcmcia.def. Consult that file for a complete list of all
possible function calls, as well as pass and return information for those calls.

The following definitions are for those function types that a driver must use
in registering and deregistering your driver with CardServices. Registration
with CardServices should be accomplished in your driver’s DR_INIT handler.
Deregistration should be performed within your driver’s DR_EXIT handler.

All CardServicesFunction types return the carry flag set if they encounter
an error and return a CardServicesReturnCode in ax . These return codes
are enumerated below:

CardServicesReturnCode etype word, 0, 1
CSRC_SUCCESS enum CardServicesReturnCode
CSRC_BAD_ADATPER enum CardServicesReturnCode

; (sic)
CSRC_BAD_ATTRIBUTE enum CardServicesReturnCode
CSRC_BAD_BASE enum CardServicesReturnCode
CSRC_BAD_EDC enum CardServicesReturnCode
CSRC_RESERVED_1 enum CardServicesReturnCode
CSRC_BAD_IRQ enum CardServicesReturnCode
CSRC_BAD_OFFSET enum CardServicesReturnCode
CSRC_BAD_PAGE enum CardServicesReturnCode
CSRC_READ_FAILURE enum CardServicesReturnCode
CSRC_BAD_SIZE enum CardServicesReturnCode
CSRC_BAD_SOCKET enum CardServicesReturnCode
CSRC_RESERVED_2 enum CardServicesReturnCode
CSRC_BAD_TYPE enum CardServicesReturnCode
CSRC_BAD_VCC enum CardServicesReturnCode
CSRC_BAD_VPP enum CardServicesReturnCode

CardServices Functions

✹ 51

✈Driver Development

3.3

CSRC_RESERVED_3 enum CardServicesReturnCode
CSRC_BAD_WINDOW enum CardServicesReturnCode
CSRC_WRITE_FAILURE enum CardServicesReturnCode
CSRC_RESERVED_4 enum CardServicesReturnCode
CSRC_NO_CARD enum CardServicesReturnCode
CSRC_UNSUPPORTED_FUNCTION enum CardServicesReturnCode
CSRC_UNSUPPORTED_MODE enum CardServicesReturnCode
CSRC_BAD_SPEED enum CardServicesReturnCode
CSRC_BUSY enum CardServicesReturnCode
CSRC_GENERAL_FAILURE enum CardServicesReturnCode
CSRC_WRITE_PROTECTED enum CardServicesReturnCode
CSRC_BAD_ARG_LENGTH enum CardServicesReturnCode
CSRC_BAD_ARGS enum CardServicesReturnCode
CSRC_CONFIGURATION_LOCKED enum CardServicesReturnCode
CSRC_IN_USE enum CardServicesReturnCode
CSRC_NO_MORE_ITEMS enum CardServicesReturnCode
CSRC_OUT_OF_RESOURCE enum CardServicesReturnCode
CSRC_BAD_HANDLE enum CardServicesReturnCode

■ CSF_REGISTER_CLIENT
This function instructs CardServices to register the driver. This function
must be passed a structure of CSRegisterClientArgs containing (among
other things) the address of the callback routine with which CardServices
should contact the driver. CardServices will send CardServicesEventCode
types to this callback routine. (For more information on defining your
callback routine see “CardServices Events” on page 53.)

This registration should occur when the driver is first loaded, upon receipt of
DR_INIT.

CSRegisterClientArgs struct
CSRCA_attributes CSRegisterClientArgsAttributes
CSRCA_eventMask CSEventMask
CSRCA_clientData CSClientData
CSRCA_version word

CSRegisterClientArgs ends

CSRegisterClientArgsAttributes record
:11
CSRCAA_ARTIFICIAL_EXCLUSIVE:1 ; want artificial INSERTION events

; after exclusive access released
CSRCAA_ARTIFICIAL_SHARED:1 ; want artificial INSERTION events for all

PCMCIA Drivers

✹ 52

✈

3.3

Driver Development

; cards resident when client registers
CSRCAA_IO:1 ; I/O cards
CSRCAA_MTD:1 ; Memory Technology Driver
CSRCAA_MCD:1 ; Memory cards

CSRegisterClientArgsAttributes end

CSEventMask record
:5
CSEM_SOCKET_SERVICES_UPDATED:1
CSEM_RESET:1
CSEM_POWER_MANAGEMENT_CHANGE:1
CSEM_CARD_DETECT_CHANGE:1
CSEM_READY_CHANGE:1
CSEM_BATTERY_LOW:1
CSEM_BATTERY_DEAD:1
CSEM_INSERTION_REQUEST:1
CSEM_EJECTION_REQUEST:1
CSEM_CARD_LOCK_CHANGE:1
CSEM_WRITE_PROTECT_CHANGE:1

CSEventMask end

CSClientData struct
CSCD_data word ; DI for callback
CSCD_segment word ; DS for callback
CSCD_offset word ; SI for callback
CSCD_extra word ; reserved word that’s not

; loaded into anything...
CSClientData ends

Pass: al CSF_REGISTER_CLIENT
cx Argument length
es:bx CSRegisterClientArgs
di:si Entry point (callback routine) of the driver

Returns: CF Set if failure
ax CardServicesReturnCode
dx Client handle

Include: pcmcia.def

■ CSF_DEREGISTER_CLIENT
This function instructs CardServices to deregister the driver. This function
must be passed the client handle returned when the driver first registered
with CardServices.

CardServices Events

✹ 53

✈Driver Development

3.4

This deregistration should occur when the driver is unloaded, upon receipt of
DR_EXIT.

Pass: al CSF_DEREGISTER_CLIENT
dx Client handle.
cx No arguments.

Returns: CF Set if failure
ax CardServicesReturnCode

Include: pcmcia.def

■ CallCS
CallCS <command, options>

This macro issues a call to CardServices. It must be passed a
CardServicesFunction to invoke.

Due to interrupt timing concerns, if the macro is called from within a
CardServices callback procedure (or from a routine that is called by such a
procedure), DONT_LOCK_BIOS must be passed as an option. At all other
times you must not pass DONT_LOCK_BIOS (unless you call SysLockBIOS
yourself) as CardServices is not re-entrant.

3.4 CardServices Events
The interface between CardServices and your driver occurs not only through
use of the PCMCIA library; your driver must also handle events sent by
CardServices as well. This is performed through use of a callback routine.
CardServices will send these events using either a timer interrupt or a
status-change interrupt (such as a physical card insertion or removal).

When your driver registers with CardServices, it must pass the address of a
callback routine. Your driver should respond to CardServicesEventCode
types sent to this callback routine and return appropriate
CardServicesReturnCode types.

The CardServicesEventCode functions pass the following arguments to
your callback routine:

PCMCIA Drivers

✹ 54

✈

3.4

Driver Development

al CardServicesEventCode
cx Socket number
dx Info
di di register for callback routine
ds ds register for callback routine
si si register for callback routine
ss MTD request segment
bp MTD request offset
es Buffer segment
bx Buffer offset or miscellaneous register

As with any CardServices functions, you should return the carry flag set if
you encounter an error and a CardServicesReturnCode in ax .

■ CSEC_CARD_INSERTION
A driver receives this event when CardServices determines that a card has
been inserted in a PCMCIA socket. The driver should respond by configuring
its card in whatever way it sees fit. A driver may also receive this event if
some other client received exclusive access to the card and is now
relinquishing it. This is transparent to the driver receiving this event.

If a driver receives this event while an unresolved objection to a previous
removal is currently active, it should reconfigure the card to its previous
state before the objection to removal was noted, if possible; it must also wait
to release any blocks (containing the “unresolved” information) until a
DR_PCMCIA_OBJECTION_RESOLVED function is received.

Code Display 3-6 Sample CSEC_CARD_INSERTION Handler
SampleHandleInsertion proc near

uses bx, dx
.enter

;
; Point to our data record for the socket.
;

call SampUDerefSocket

CardServices Events

✹ 55

✈Driver Development

3.4

;
; Here’s where you’d examine the card’s CIS to see if it’s something
; you support, then attempt to set it to one of its configurations.
; If all that succeeds, you’d set ds:[bx].SSI_support to SCS_YES.
; If any of that fails, you’d set ds:[bx].SSI_support to SCS_NO.
;

PrintMessage <INSERT CODE HERE>

setYes::
mov ds:[bx].SSI_support, SCS_YES

;
; See if the card was removed under protest.
;

tst ds:[bx].SSI_conflict
jz clearConflict

;
;
; If this card is coming back in after having been removed while
; in-use you may need to tell another driver to restore the state of the
; card (this is what happens in the CIDSer driver, for example, where the
; baud rate and other parameters need to be restored here).
;
; If you block people’s access to the card while it’s in conflict,
; this is the time to wake them all up using code like this:
;
; call SysEnterCritical
; VAllSem ds, [bx].SSI_conflictSem
; mov ds:[bx].SSI_conflictSem.Sem_value, 0
; call SysExitCritical
;
; The Enter/ExitCritical prevents other threads from running so we can
; reliably set the Sem_value to 0 (it ends up at 1) to cause people
; to block immediately the next time the card is in conflict.
;

PrintMessage <INSERT CODE HERE>

clearConflict:
mov ds:[bx].SSI_conflict, 0

done:
.leave
ret

PCMCIA Drivers

✹ 56

✈

3.4

Driver Development

setNo:
mov ds:[bx].SSI_support, SCS_NO
jmp done

SampleHandleInsertion endp

■ CSEC_CARD_REMOVAL
A driver receives this event when Card Services determines that the card has
been removed. If this removal is acceptable, the driver should release all
Card Services-related resources that it had allocated and make sure not to
access the card in the future.

A client may also receive this event if another client has been granted
exclusive access to the card. When the other driver relinquishes exclusive
access, the previously contacted drivers will receive CSEC_CARD_INSERTION
events.

If a driver has been granted exclusive access to a card and receives a
CSEC_CARD_REMOVAL event, it should call
PCMCIAExclusiveCardRemoved. If instead, the driver wishes to raise an
objection to this card removal (for example, a serial port was in use or a file
is currently open on the card) it should call the PCMCIAObjectToRemoval
library utility routine. The driver must then wait for the objection to be
resolved (through a DR_PCMCIA_OBJECTION_RESOLVED event). If the
driver receives a fresh CSEC_CARD_INSERTION event, it should reconfigure
the card if it is able. It should not grant access to the card until
DR_PCMCIA_OBJECTION_RESOLVED is received.

Code Display 3-7 Sample CSEC_CARD_REMOVAL Handler
SampleHandleRemoval proc near

uses bx, dx, bp
.enter

call SampUDerefSocket

;
; If card not supported, we’re happy to see it go (why are we here?)
;

CardServices Events

✹ 57

✈Driver Development

3.4

tst ds:[bx].SSI_support
jz resetSupport

;
; See if the card is being used by GEOS using whatever means are
; available/appropriate.
;

PrintMessage <INSERT CODE HERE>
call SampCSCheckInUse
jne resetSupport

;
; It is in-use, so mark the port conflicted and tell the PCMCIA library
; of our objections.
;

mov ds:[bx].SSI_conflict, TRUE

mov dx, TRUE ; card may NOT be removed
mov bp, handle 0
call PCMCIAObjectToRemoval

resetSupport:
;
; Always set SSI_support back to SCS_NO, as it reflects our opinion of
; the current state of the socket.
;

mov ds:[bx].SSI_support, SCS_NO
clc
mov ax, CSRC_SUCCESS
.leave
ret

SampleHandleRemoval endp

■ CSEC_EXCLUSIVE_COMPLETE
A driver receives this event when CardServices grants a client driver
exclusive access to the PCMCIA socket. The driver should acknowledge that
it has received the event by calling PCMCIAExclusiveGranted.

PCMCIA Drivers

✹ 58

✈

3.4

Driver Development

■ CSEC_EXCLUSIVE_REQUEST
A driver receives this event when CardServices requests, at the behest of
another driver, exclusive access to the card. The driver should react
negatively to this event if it objects to this exclusive access. The criteria for
this objection should be much the same as if it had received a
CSEC_CARD_REMOVAL event.

Code Display 3-8 Sample CSEC_EXCLUSIVE_REQUEST Handler
SampCSHandleExclusiveRequest proc near

uses bx, di
.enter

call SampCSCheckCardInUse
jnc done

;
; Card is in use - don’t allow the exclusive access.
;

mov ax, CSRC_IN_USE

stc

done:
.leave
ret

SampCSHandleExclusiveRequest endp

■ CSEC_CLIENT_INFO
A driver receives this event when CardServices requests standard client
information.

Code Display 3-9 Sample CSEC_CLIENT_INFO Handler
;
; Remember that this is not a complete routine.

CardServices Events

✹ 59

✈Driver Development

3.4

doInfo:
test es:[bx].CSGCIA_attributes, mask CSGCIAA_INFO_SUBFUNCTION
jnz unsupported ; only handle function 0

;
; Return info about this client to whomever is asking.
;

mov cx, cs:[clientInfo].CSGCIA_infoLen
cmp cx, es:[bx].CSGCIA_maxLen
jbe copyInfo
mov cx, es:[bx].CSGCIA_maxLen

copyInfo:
segmov ds, cs
mov si, offset clientInfo.CSGCIA_infoLen
lea di, es:[bx].CSGCIA_infoLen
sub cx, offset CSGCIA_infoLen ; not copying all stuff

; up to here

rep movsb
jmp success

The following is a complete list of CardServicesEventCode routines
defined in pcmcia.def.

CardServicesEventCode etype word
CSEC_PM_BATTERY_DEAD (001h)
CSEC_PM_BATTERY_LOW (002h)
CSEC_CARD_LOCK (003h)
CSEC_CARD_READY (004h)
CSEC_CARD_REMOVAL (005h)
CSEC_CARD_UNLOCK (006h
CSEC_EJECTION_COMPLETE (007h)
CSEC_EJECTION_REQUEST (008h)
CSEC_INSERTION_COMPLETE (009h)
CSEC_INSERTION_REQUEST (00ah)
CSEC_PM_RESUME (00bh)
CSEC_PM_SUSPEND (00ch)
CSEC_EXCLUSIVE_COMPLETE (00dh)
CSEC_EXCLUSIVE_REQUEST (00eh)
CSEC_RESET_PHYSICAL (00fh)

PCMCIA Drivers

✹ 60

✈

3.4

Driver Development

CSEC_RESET_REQUEST (010h)
CSEC_CARD_RESET (011h)
CSEC_MTD_REQUEST (012h)
CSEC_RESERVED_1 (013h)
CSEC_CLIENT_INFO (014h)
CSEC_TIMER_EXPIRED (015h)
CSEC_SS_UPDATED (016h)

CSEC_CARD_INSERTION (040h)

CSEC_RESET_COMPLETE (080h)
CSEC_ERASE_COMPLETE (081h)
CSEC_REGISTRATION_COMPLETE (082h)

Your driver will need to create a table to map these event codes to the
handlers to invoke for each.

Note that the CSEC_CARD_INSERTION, CSEC_RESET_COMPLETE,
CSEC_ERASE_COMPLETE and CSEC_REGISTRATION_COMPLETE events do
not follow the simple incremental numbering of the previous events. You will
need to check for these events individually, rather than through a simple
jump table.

Your handler should respond with an appropriate
CardServicesReturnCode.

For example, the sample PCMCIA driver included on the SDK defines the
following table:

Code Display 3-10 A Sample CardServices Event Table
; It is usually convenient to define such a table within the Callback
; routine itself.

DefCSEvent macro event, handler
.assert ($-eventRoutineTable)/2 eq (event-1)
nptr.near handler

endm

eventRoutineTable label nptr
DefCSEvent CSEC_PM_BATTERY_DEAD, doIgnore
DefCSEvent CSEC_PM_BATTERY_LOW, doIgnore
DefCSEvent CSEC_CARD_LOCK, doIgnore

CardServices Events

✹ 61

✈Driver Development

3.4

DefCSEvent CSEC_CARD_READY, doIgnore
DefCSEvent CSEC_CARD_REMOVAL, doRemoval
DefCSEvent CSEC_CARD_UNLOCK, doIgnore
DefCSEvent CSEC_EJECTION_COMPLETE, doIgnore
DefCSEvent CSEC_EJECTION_REQUEST, doIgnore
DefCSEvent CSEC_INSERTION_COMPLETE, doIgnore
DefCSEvent CSEC_INSERTION_REQUEST, doIgnore
DefCSEvent CSEC_PM_RESUME, doIgnore
DefCSEvent CSEC_PM_SUSPEND, doIgnore
DefCSEvent CSEC_EXCLUSIVE_COMPLETE, doIgnore
DefCSEvent CSEC_EXCLUSIVE_REQUEST, doExclusiveReq
DefCSEvent CSEC_RESET_PHYSICAL, doIgnore
DefCSEvent CSEC_RESET_REQUEST, doIgnore
DefCSEvent CSEC_CARD_RESET, doIgnore
DefCSEvent CSEC_MTD_REQUEST, unsupported
DefCSEvent CSEC_RESERVED_1, unsupported
DefCSEvent CSEC_CLIENT_INFO, doInfo
DefCSEvent CSEC_TIMER_EXPIRED, doIgnore
DefCSEvent CSEC_SS_UPDATED, doIgnore
endEventRoutineTable label nptr

Code Display 3-11 A Sample PCMCIA CardServices Callback Routine
COMMENT @%%%

SampCardServicesCallback
%%

SYNOPSIS: Callback routine for Card Services events

CALLED BY: Card Services

PASS: al -> function
cx -> socket
dx -> info
di -> 1st word in RegisterClient
ds -> dgroup (2nd word in RegisterClient)
si -> 3rd word in RegisterClient
ss:bp -> MTDRequest
es:bx -> buffer
bx -> Misc (when no buffer returned)

RETURN: ax <- status to return
carry set on error,
carry clear on success.

PCMCIA Drivers

✹ 62

✈

3.4

Driver Development

DESTROYED: nothing

SIDE EFFECTS:
None

%%

SampCardServicesCallback proc far
uses cx, dx
.enter

; We need to check for the events which can’t be included in a linear
; sequential jump table

cmp al, CSEC_CARD_INSERTION
je doInsertion

cmp al, CSEC_REGISTRATION_COMPLETE
jne handleEvent

; We’re registered, so we should note this in our driver’s state variable

mov ds:[amRegistered], TRUE
jmp success

; Now we handle the other events

handleEvent;

clr ah
mov di, ax
shl di
cmp di, endEventRoutineTable - eventRoutineTable
ja unsupported

; We need to subtract 2 from the value of di since the events are
; one-based, not zero-based.

jmp cs:[eventRoutineTable][di-2]

; For each “routine” mentioned in the table, a label should appear
; following this jump
;
; Example:

doExclusiveReq:
call SampCSHandleExclusiveRequest
jmp done

CardServices Events

✹ 63

✈Driver Development

3.4

;--------------------
doInsertion:

call SampHandleInsertion
jmp success

doIgnore:

success:
mov ax, CSRC_SUCCESS
clc

done:
.leave
ret

;--------------------
;
; The description of what this client supports, when it was created,
; etc.
;

clientInfo CSGetClientInfoArgs <
0, ; CSGCIA_maxLen
size clientInfo,
mask CSGCIAA_EXCLUSIVE_CARDS or \

mask CSGCIAA_SHARABLE_CARDS or \
mask CSGCIAA_MEMORY_CLIENT_DEVICE_DRIVER,

< ; CSGCIA_clientInfo
0100h, ; CSCI_revision
0201h, ; CSCI_csLevel
<

29, ; CSDI_YEAR
9, ; CSDI_MONTH
22 ; CSDI_DAY

>, ; CSCI_revDate
clientInfoName - clientInfo, ; CSCI_nameOffset
length clientInfoName, ; CSCI_nameLength
vendorString - clientInfo, ; CSCI_vStringOffset
length vendorString ; CSCI_vStringLength

>
>

org clientInfo.CSGCIA_clientInfo.CSCI_data ; go back into the
; middle of the struct
; to place these
; strings in the right
; place

PCMCIA Drivers

✹ 64

✈

3.4

Driver Development

clientInfoName char “Sample PCMCIA Driver”, 0
vendorString char “Geoworks”, 0

; Your event table should appear here...

SampCardServicesCallback endp

	TOC
	Driver Basics
	Mouse Drivers
	PCMCIA Drivers

